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Abstract-A nonlinear problem of thermal, mass and dynamic interaction between a vapour-gas bubble 
and a liquid is considered with account for temperature nonuniformity in the bubble and interdiffusion of the 
vapour-gas mixture components. A numerical solution is obtained for the problem of radial bubble motion 
induced by a sudden pressure change in the liquid - a situation which, in particular, corresponds to the 
behaviour of bubbles beyond a shock-wave front when the latter enters a bubble curtain. Considered also are 
vapour-gas bubbles oscillating in the liquid under the influence of a sound held. The capillary effects and 
phase transitions, taken together, are shown to produce a new resonant frequency of small vapour bubbles 
which differs from that described by Minnaert. The expressions for the frequency and the thermal damping 
ratio of bubble oscillations are obtained. The effective coefficients of heat transfer between radially oscillating 

bubbles and the liquid are determined. 

NOMENCLATURE 

bubble radius ; 
time derivative of the radius; 
radial Euler coordinate; 
time; 
temperature; 
density ; 
pressure ; 
concentration ; 
velocity; 
diffusion rate; 
specific internal energy; 
thermal conducti~ty ; 
interdiffusion coemcient; 
gas constant; 
rate of phase transitions from a unit surface; 
accommodation coefficient ; 
viscosity ; 
specific heat of vaporization ; 
specific heat ratio ; 
speed of sound in a gas; 
specific heat ; 
thermal diffusivity ; 
frequency of oscillations; 
= 2nf, circular frequency; 
mass of a bubble; 
logarithmic decrement; 
resonant function ; 
acoustic pressure amplitude; 
nondimensional displacement of bubble 
surface ; 
phase of oscillations; 
bubble compressibility; 
surface tension coefficient. 

Subscripts 

6 liquid ; 
0, vapour ; 
A gas ; 

s, at saturation; 

Q, on bubble surface; 

4 at equilibrium; 
co, conditions far away from the bubble; 
R, in resonance. 

INTRODUCTION 

THE STUDY of oscillations of vapour-gas bubbles in a 
liquid is of considerable practical interest specifically 
in regard to the question of the possible use of bubble 
screens for damping shock waves and the use of 
acoustic disturbances for intensification of technologi- 
cal processes. 

In vapour-liquid flows, the mass, force and energy 
interactions between phases originate on the interface 
surfaces. These interactions can significantly alter the 
flow velocity, pressure and temperature fields. A 
correct s~ifi~tion of the interphase heat and mass 
transfer requires the knowledge of interaction of single 
inclusions with the carrier phase. 

At present a number of publications are available in 
which different aspects of the problem of oscillations of 
gas bubbles in a liquid are studied. It has been revealed 
Cl] that in the case of small oscillations of a bubble 
within a wide range of the equilibrium values of its 
radius the heat transfer dominates over other dissi- 
pation mechanisms, i.e. viscosity and compressibility 
of the liquid. The problem of heat transfer in the course 
of nonlinear oscillations of a gas bubble was studied 
ex~~mentally [2]. The results of numerical solution 
for the nonlinear problem of thermal and dynamic 
interactions of a gas bubble with the liquid induced by 
a sudden pressure change in the liquid are presented in 
[3]. A number of studies deal with the study of growth 
and collapse of vapour bubbles in a liquid (see, for 
example, the literature cited in a recent survey [4]1. 
The assumptions of the temperature uniformity in the 
bubbles and of the thinness of a thermal boundary 
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layer in the liquid, adopted in the majority of these 
studies, considerably simplify the problem but hold 
under certain restrictions only. 

The heat and mass transfer effect on the vapour 

bubble dynamics with account for the temperature 

nonuniformity in it is considered in [5]. Wang [6] and 

Khabeev [7], while calculating the dynamics of vapour 
bubbles in a sound field, have revealed the existence of 

two resonant dimensions of vapour bubbles. The 
existence of a new resonant frequency of a vapour 

bubble, which differs from that reported by Minnaert 

[8], has been also revealed in [7]. 
Resonant properties of homogeneous equilibrium 

vapour bubbles were also the concern of Finch and 
Neppiras [9] who determined the resonant frequencies 
of a bubble, but not quite correctly. In [lo], an attempt 
was made to analytically determine the resonant 

dimensions of vapour bubbles and to furnish a physi- 
cal explanation of the nature of the second resonance. 
However, neglect of the capillary effects as well as some 

other inaccuracies have led Hsieh [lo] to an erroneous 
formula which fails to give the realistic values of the 

resonant dimensions of vapour bubbles, for example, 

in versions calculated in [6, 71. 
This paper gives the results of investigation of the 

heat and mass transfer effect on the dynamics of 
vapour-gas bubbles as well as of the reverse effect of 
the dynamics of radial bubble motion on the enhance- 
ment of heat transfer between the bubbles and liquid. 
These studies were carried out with reference to the 

analysis of wave processes in vapourliquid mixtures 

having a bubble structure. 

GOVERNING EQUATIONS 

The assumptions adopted are those used in the 
Rayleigh formulation [ 1 I] for the dynamics of a single 

bubble, viz. a spherical symmetry of the process and 
pressure uniformity p,(t) (homobaricity) within the 
bubble. In the course of bubble oscillations, the 
homobaricity prevails when the size of the bubble is 
much less than the length of a sound wave in the gas, 

wR K C. On the other hand, when the bubble radius 
changes monotonically (collapse, growth), the homo- 
baricity condition can be written down [12] as 

(o&)2 << 1. 

At the same time it is supposed according to the 
equation of state that the gas density at each point 
corresponds to its temperature. This statement of the 
problem, when the pressure uniformity and the tem- 
perature and gas density nonuniformities in the bubble 
are assumed, is valid for a wide range of bubble sizes, 
since it has been estimated [3] that the characteristic 
time of temperature equalization in the bubble con- 
siderably exceeds the time of pressure equalization. 

By introducing the concentration of vapour, k,, and 
of the inert gas, k,, in the vapour-gas mixture the 
thermophysical parameters of the mixture at each 

point will be determined as 

cp = k,Cn, + k,cp, 

k, = P,IP> k, = pslpt P = pu + pg, 

k, + k, = 1. 

In what follows, we shall denote, for simplicity, k, by 

k and k, by 1 - k. 
Within the framework of the assumptions made and 

the notation adopted, the continuity, state and heat 
influx equations will have the form 

aP" 1 a 
x + 7 z [r2 P"(O + w.31 = 0 

f$ + f;[r2p,jo + w,)] = 0 

psws = - pow, = pDak/dr, [0 2 r < R(t)] 

(1) 

ug = cgT, u”=q,T, T,= Tg= T, 

P = P” + ps = PET 

r2 v, = R2 via, u, = c, T,, p,=const, (R<r<x) 

The boundary conditions for the system (1) on the 

moving boundary R(t), at the centre and at infinity are 

r = R(t), T, = T, = T,, R,dT,/ar - MT/& = jl 

p,(d - v - w,) = p,(d - u,) = j, p&d - 0 - wg) 
= 0 

(2) 

r = 0, aTJar = akldr = 0, T,(Z) = T,. 

The kinetics of phase transitions is described by the 

Hertz-Knudsen-Langmuir equation 

PAT,) - ~vn 
j = K (2,&, To),:2 

The equation for bubble oscillations in a viscous 
incompressible fluid in the presence of phase tran- 
sitions [12] and that for the bubble mass change are 

Rd,, + i vfb + 2v,,jJp, = ’ - pr - 2a’R - 2 v,, 
PI 

(4) 

ri = 4rcR2j. (5) 

When the homobaricity condition is satisfied, there 
is an integral of the heat influx equation for the gas 
phase 
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dp = 
dt 

G = (4 - B&u T a 
(c + B) 

7% 

+ &[f$(“r’g) + (c, - c&D;:]. (6) 

The continuity equation for the vapour-gas mix- 
ture, with the use of the homobaricity condition and 

the boundary condition ~(0, t) = 0, yields the velocity 
profile in the bubble 

r2dr - 5:. (7) 

For a one-component bubble, equations (6) and (7) 
can be considerably simplified 

-_=p (8) 

(9) 

As is seen, the temperature gradients deviate the 
velocity profile from a linear one. 

For the temperature dependence of the saturated 
vapour pressure the following approximation [12] has 
been applied 

ps = P* exp( - TJT,), (10) 

where p* and T, are found from the condition of the 
best approximation of tabulated data in the specified 
pressure range. Ordinary exponential temperature 
dependences have been employed for the heat con- 
duction and diffusion coefficients. 

DISCUSSION OF RESULTS 

For nonlinear modes of radial motions of a bubble 
(oscillations, growth, collapse) the results of numerical 
solution of the problem are presented in [3, 5, 131 for 
gas, vapour and vapour-gas bubbles, respectively. The 
problem was solved using a finite-difference technique 
by dividing the whole system into spherical layers 
inside and outside the bubble and employing the 
variable 5 = r/R(t) which ‘freezes’ the moving boun- 
dary of the bubble. With allowance made for the finite 
thermal conductivity of liquid, the boundary condition 
at infinity can be applied to the last layer of the liquid. 
The calculation is checked by means of a fit of the 
bubble mass predicted by integrating equation (5) to 
that obtained by direct layer-to-layer calculation. In 
the examples considered in [3, 5, 131, the agreement 
was within f 1 y0 

Calculations [3] for a gas bubble indicate that even 
on its strong compression, when the gas temperature at 
its centre amounts to about 1000 K, the temperature of 
the bubble surface stays practically constant and is 

equal to the temperature of the surrounding liquid 
which acts as a thermostat, i.e. for a gas bubble the 
internal thermal problem plays a major role, while the 
boundary condition on the bubble surface may then be 
set as To = To. There are, however, some publications, 
see for example [14], in which heat transfer between 
gas bubbles and liquid is wrongly believed to be 
governed by thermal resistance of the liquid. 

Figure 1 shows the characteristic temperature distri- 
bution inside a gas bubble oscillating in consequence 
of a sudden pressure increase from p. to p1 in the liquid 
far from the bubble ~ a situation corresponding to the 
behaviour of bubbles in the front part of the bubble 
screen upon entrance of a shock wave. The initial data 
are as follows: R, = 1 mm, p. = 1 bar, p1 = 2 bar. 
Curves 1-7 correspond to the instants of time: wt = 0; 
2~15; 3~15; n; 6n/5; &r/5; 2n, with Wt = 0 and 2~ 
corresponding to two successive moments of the 
greatest compression of bubble. It is interesting that 
over some time intervals, for example 2n/5 I wt I 
6n/5, the heat flux is directed to the bubble inwards, 
although the mean temperature of the gas in the 
bubble (T) is above the liquid temperature To. In this 
case, the formally determined dimensionless heat flux, 
viz. the Nusselt number, is negative 

Nu = 
2Rqo 87-g 

l&(T) - To)' ‘O= -k r=R (“) 
where go is the heat flux from the bubble into the liquid. 
The reason for this behaviour is that, being heated on 
compression, the bubble gives up its heat to the liquid 
intensely due to a large gas-temperature gradient in a 
thin wall layer and a high absorption of this heat by the 
liquid, while during bubble expansion the heat con- 
duction does not succeed in compensating for cooling 
of the gas wall layers caused by expansion. 

The results of calculations [5] have shown that at 
moderate velocities of the bubble surface the phase 
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FIG. 1. Characteristic temperature distribution within an 
oscillating gas bubble at different instants of time: 1, cot = 0; 

2, 2x15; 3, 345; 4, n; 5, 645; 6, 845; I, 2x. 
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FIG. 2. Radius vs time curve for collapse of a vapour bubble in 
various liquids under identical conditions: R, = lOpm, p0 
= 1 bar, pi = 1.2 bar. Curves l-5 are for water, Freon-12, 

liquid nitrogen, hydrogen and helium, respectively. 

transition virtually follows the quasi-equilibrium 
scheme T, = T,(p,) (there is no delay due to the 
kinetics of phase transitions). With a step-wise vari- 
ation of pressure in the liquid both monotonic and 
oscillatory changes in the vapour bubble parameters 
are possible. 

Figure 2 presents the calculated radius vs time 
curves for condensational collapse of vapour bubbles 
in various liquids. Curves l-5 show the behaviour of 
bubbles in water, Freon-12, nitrogen, hydrogen, and 
helium under identical initial conditions. The pressure 
in the liquid was instantly brought up from p,, = 1 bar 
to p = 1.2 bar, the initial bubble radius was 10pm (R, 
= lOpm), the initial temperature in the system was 
uniform and equal toits own saturation temperature 
corresponding to the equilibrium pressure in the 
bubble, T, = T,(p’), p” = p. + 2a/R,. 

The course of curves l-5 in Fig. 2 confirms the 
effectiveness of the parameter 

@ = Ju~~,/R,(~,/A~)~~~ 

suggested in [15] to predict the nature of collapse of 

vapour bubbles. Here Ja ( = cl ATp,/lp,,) is the Jacob 
number, Ap = p, - po, AT= T,(p,) - To. At large @s, 
the process of bubble collapse is similar to the limiting 
inertial regime, while at small @s, to the thermal 
regime. For curves 1-5 in Fig. 2 there are the following 
valuesofcD:8;6xlO-‘; 10-2;5x10~4;2x10~4. 

Figure 3 shows a comparison between the predicted 
radius-time curves and the experimental data of [ 151 
on collapse of vapour-air bubbles in water for 

R, = 3.66 mm, p. = 0.636 bar, To = Ts(po) 

(curve 1) 

R, = 3.36mm, p. = 0.734bar, To = T,(po). 

(curve 2) 

In both cases, the system was instantly exposed to the 
atmospheric pressure p, = 1 bar. The initial content of 
a nonsoluble gas in both cases amounted to k, = 
0.0002 and k, = 0.0006, respectively. This small 
amount of gas does not virtually influence the initial 
behaviour of the radius-time curve leading to incom- 
plete collapse of bubbles only. To make the picture 
more lucid, the curves are plotted on different scales : 
the left vertical and the upper horizontal axes cor- 
respond to curve 1, the right vertical and the lower 
horizontal, to curve 2. A good agreement between the 
prediction and experiment is evident. The dashed 
curve represents theoretical calculations [ 161 for this 
experiment. In these calculations, it was arbitrarily 
assumed that velocity distribution of vapour particles 
in the bubble was parabolic and this resulted in 
distortion of the temperature profile. In actual fact, the 
velocity profile in a vapour bubble is described by 
equation (9). The difficulty posed by determination of 
the velocity profile in a bubble was responsible for 
nonjustifiable omission of the convective term in the 
heat conduction equation by some authors or its 
artificial pre-assignment (linear [17] or parabolic 
[ 16]), by others. Cho and Seban [ 161 also ignored the 
heat flux into the vapour phase. But the main draw- 
back of [16], which had led to a substantial discrep- 
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FIG. 3. Comparison of the calculated ‘radius-time’ curves with the experimental data of [15] and the 
theoretical calculations of [16] (dashed curve) for vapour-air bubbles collapsing in water. 
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ancy with the experiment, was the wrong step in the 
finite-difference scheme for the liquid energy equation. 

The step of the finite difference grid for the liquid 
energy equation should apparently satisfy the con- 
dition h, << 6r, where 6r N (a,/~)“~ is the thermal 
boundary layer thickness in the liquid, o = 
(3yp,/p,)“’ R,’ is the frequency of oscillations. For 
the version presented in Fig. 3 6, _ low5 m or 6, N 0.3 
x lo-’ R,. Consequently, the step hi should satisfy the 

condition h, 5 10m3 R,. A larger step, h, = 10m2 R,, 
selected by Cho and Seban [ 161, has led to substantial 
underestimation of the liquid temperature gradient in 
the wall boundary layer and, as a consequence, to a 
highly underestimated phase transition rate. Thus it 
happened that j/p, cc l? and, according to (2), that o, 
z d. The latter, once the heat flux into the vapour 
phase is neglected [16], leads, via integration of 
equation (8) to the familiar relation for an adiabatic 
gas bubble 

P,R 3’1 = const. (12) 

It is hardly surprising on that account that Cho and 
Seban [ 161 have obtained a close coincidence of their 
predictions with the behaviour of an adiabatic con- 
stant mass gas bubble and a qualitative discrepancy 
with the experiments of [ 151 in which clearly defined 
oscillations of bubbles were not observed. 

It should be noted that consideration of the effect of 
heat and mass transfer on the vapour-gas bubble 
dynamics under the assumption that the bubble 
temperature is uniform [18] is permissible only at 
sufficiently low concentrations of gas in the bubble 
when heat transfer between the bubble and the liquid is 
governed by the thermal resistance of the latter. At 
large gas contents in the bubble, heat transfer is 
controlled by the thermal resistance of the bubble. 

The internal thermal problem becomes also signi- 
ficant at high parameters when the thermal properties 
of vapour and liquid get closer. 

Note that the temperature of vapour in a bubble is 
virtually uniform and equal to the saturation tempera- 
ture not only under the condition, which is usually 
employed but rarely realized in practice, that the 
bubble size is less than the thickness of a thermodif- 
fusional layer in vapour, R < (a&~)“~, but also at 
c,T,/l z 1 or c, z 0, where c, is the vapour heat 
capacity along the phase equilibrium curve [19] 

_dr, d /l\ 1 

For liquid helium c, 5 0 at atmospheric pressure, 
while for water c, z 0 at p _ 30 bar. 

SMALL OSCILLATIONS 

Thermal effects in the course of small free and forced 
oscillations of gas bubbles were considered in [l, 20, 
211. The effects of heat transfer and of nonequilibrium 
phase transitions during oscillations of bubbles were 
considered in [7]. 

Under the assumption that the acoustic pressure 

amplitude pA is small as compared with the static 
pressure pm in the liquid 

p(a) = pm + pA exp(W 

and that the bubble radius is described by the real part 
of the expression 

R = R,[l + aexp(iwt)], Ial << 1 

Khabeev [7] has obtained an analytical solution of the 
problem which, in a quasi-equilibrium approximation, 
is of the form 

aP = P& aP = apmlpAl 

(13) 

S = plm2Ri + 213/R, - 4iwp, - 3p. 

Here S is the resonant function, Y is the bubble 
compressibility 

Y= 
1 - ia,[B,Gi + F(l + Ez”~)]/coR; 

ypo + ioa,p,,[B, G,b/(l - b) - F(1 + Ez”‘)]/3 

b = c,T,/l, z = iwR$a,, E = (a,/a,)1’2, 

B 1 = zli2 coth~“~ - 1, PO = pm + 2dR0, 

To = TAP,), G1 = 3(y - l)(l - b)‘, 

F = 3(y - l)b21,,/L,. 

(14) 

Analysis of equation (13) reveals that 

kIfblar[ = rllmmjaPl = $nmIaPI =O, 

lim I a,, I = pm Ro/2a 
0-O 

(15) 

liif = lion! = lirm!I = limj = 0 
w-m 

where /I is the phase shift between oscillations of the 
bubble radius and pressure at infinity. At u = 0 

imo I aP I = p-,/40pc,, lim ) a) I = co. 
0-O 

(16) 

It follows from equation (15) that at u # 0 for any 
finite frequency there is at least one such bubble size at 
which I aP I attains the maximum value. This proves the 
invalidity of the results of [9] which indicate that there 
are no resonant vapour bubbles at sufficiently high 
frequencies of the acoustic field. 

In the absence of phase transitions, the analysis of 
equation (13) shows that 

lii[ = 1ilmJ = IL, 

1 (17) 
lim laPI = 
m-0 3~ + 243 - l)IRo~m ’ 

Note that for a gas bubble of constant mass Macedo 
and Yang [20] have obtained 

liif = ‘ill! = 0. 

This, as well as the existence of two resonant 
dimensions of gas bubbles, which has been established 
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in [20], is true only at artificially fixed pressure in the 
bubbles, p. = px + 2a/R, = const. But then the static 
pressure in the liquid, p, would decrease with decreas- 
ing R,, and for small bubbles (in water at R, ,< 1 pm) 
should become negative. Such a ‘resonance’ would 
then be realized at a negative pressure in the liquid, 

PCC z -2p,, which is impracticable. 
The expression for the bubble compressibility can be 

considerably simplified if it is remembered that for the 
majority of substances the following estimates are 
valid in a wide range of variable parameters 

O<G,<l, O<bsl, F-l, ~,<<a, 

(18) 

Wp”oa”- 1 + Ez1’2 1 << 1, F/ 
PO 

IB,I<<Fll +Ez”2I. 

After simplification we get 

~ = fz + F(l + Ez112) 
(19) 

YPO Z 

The resonant frequency is determined by solving the 
following equation 

dlSl/&0=0 (20) 

and checking the condition a2 I S I /do2 > 0. For rather 
large bubbles, when the condition 

Iz( >> FI 1 + Ez’j2I (21) 

is satisfied, the effect of heat and mass transfer on their 
dynamics is small. The solution of equation (20) may 
then be sought in the form 

OR = wg( 1 + E), 1 I: I << 1 (22) 

where w. = (3y~,/p,)‘;~ R; ’ is the natural frequency 
of an adiabatic gas bubble in an ideal liquid [S]. By 
substituting (13) into (20), with account for (19) and 
(21), and using the smallness, c, ofcapillary and viscous 
effects, we obtain 

- Fa, 

’ = 2 JC(2a,)(3~~,iP,)1/4 RY] 
(23) 

The correction obtained for the resonant frequency 
of large vapour bubbles characterizes the effect of heat 
and mass transfer processes on the dynamics of 
bubbles. Ofcourse, it increases with a decreasing R,. In 
the other limiting case of rather small bubbles, when 
the following conditions are satisfied 

~z~<<F~~+Ez’~~~, Elz”*1>>1, pIcozR;<<;, 
0 

4wp, c-c ARow’!’ (24) 

the expression for the resonant function is of the form 

l2 PZO S=g-AR,w”‘(l+i), AciT 
0 ‘I 0 

(25) 
p,w2 R; cc R, 4j~(, <C AR; 

0 

In [9, lo], the resonant frequency of a vapour are satisfied, the expression for the resonant frequency 

bubble is determined by solving the equation 

Re(S) = 0. (26) 

This approach is incorrect since, besides the real part, 
the imaginary part of the resonant function is also a 
function of the bubble radius and of the acoustic field 
frequency. Determination of the resonant frequency 
from equation (26), giving an illusion that there is a 
universal dependence relating the resonant frequency 
to the bubble size, does not lead to great errors in [9] 
only in the region of large bubble radii and small 
acoustic field frequencies when the formula of Min- 
naert is valid. This very inaccuracy has led the author 
of [lo] to an erroneous formula which relates the 
resonant frequency of a bubble to its radius. Moreover, 
neglect of the capillary effects [lo, 221 precludes the 
very possibility of the second resonance. 

When the conditions (24) are satisfied, it is possible 
to obtain a simple formula relating the resonant 
frequency of a vapour bubble to its radius. By solving 
for (25) equation (20) in (I) we obtain 

wx = (a/A)’ Ro4. (27) 

For the first time formula (27) was derived in [23]. 
Later a formula of the same type was published in [24]. 

Provided the condition 2o/R, 5 p3. is also satisfied, 
then by solving, for (25). the equation 

PISl/dR,=O (28) 

we obtain the dependence of the resonant size of a 
bubble on the acoustic field frequency 

Ri = 2(a/A)2cK’. (29) 

This relation is not exactly the reverse of (27) as it 
differs by the numerical factor. 

Note that if we set ~7 = 0, then neither the resonant 
frequency, nor the resonant size of the bubble will exist 
in the range considered. In fact, in this case 

S = p,dR~ - ARow”2(1 + i). 

It can be easily verified that then equations (20) and 
(28) will have no real roots. At the same time, 
determination of the resonant frequency within the 
framework of the approach of [9, lo] via the solution 
or equation (26) leads in this case to an erroneous 
conclusion on the existence of the resonant frequency. 

By evaluating the range of dimensions of bubbles 
and acoustic field frequencies for which equations (27) 
and (29) can hold we shall obtain that for water at p, 
= 1 bar these estimates yield 

10e5m 5 R, 5 10-4m, 1OHz s/2< 104Hz. 

If the conditions 

/zI << F, E/z”‘I << 1 

(30) 

20 
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FIG. 4. Dependence of the amplitude and phase of oscillations 
on the radius of a vapour bubble during its oscillations in 
water at a frequency off = 1 kHz. Dashed curve corresponds 

to u = 0, dashed-dotted curve, to a gas bubble. 

has the form 

S = (2u/Ro) - AR&o,/(2/u,)[~(w/2a,) + i]. (31) 

Solution of equation (20) for (31) gives the following 
dependence of the resonant frequency of a bubble on 
its radius 

n-2 
7” 

*R = 4A2R4 
0 

(32) 

which differs from (27) by a numerical factor only. The 
estimates show that for water at pm = 1 bar equation 
(32) is valid for bubbles having R, 2 10m4 m. How- 
ever, the Q-factor of the second resonance in this 
region is much below the Minnaertian one. 

Figure 4 presents the dependence of the dimension- 
less amplitude of oscillations 1 ccp 1 and of phase /I on the 
bubble radius in the course of its oscillations in water 
at atmospheric pressure and frequency of 1 kHz. 
Dotted and dash-dotted curves correspond to the 
cases u = 0 and j = 0. Here, the second resonance is 
absent. 

The calculations have shown that for large vapour 
bubbles (in water at pz = 1 bar for R, 2 1 mm) the 
Minnaertian resonance alone is virtually observed (the 
second resonance does not show itself in this region 
because of the low Q-factor), while for the bubbles 
having R, 5 0.1 mm there is only a resonance which is 
associated with capillary effects and phase transitions. 
In the intermediate region, the response function 1 tip 1 
has two local maxima, with the second appearing at 
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FIG. 5. Dependence of the resonant frequency of a vapour 
bubble on its radius in water and nitrogen boiling at 
atmospheric pressure (solid and dashed lines, respectively). 

very low frequencies of the acoustic field. The position 
of resonances agrees well with the foregoing formulae. 

Figure 5 shows the plots of the resonant frequency of 
a vapour bubble in water and liquid nitrogen (solid 
and dashed lines, respectively) vs its radius which were 
calculated by equation (13) at pz = 1 bar. Both curves 
have 2 branches. The second branch in the region of 
small R,s appears only then when the capillary effects 
and phase transitions are accounted for simul- 
taneously. In the region R. 2 10m5 m the predicted 
relations agree well with the approximations (22), (27) 
and (32). The dependence of the resonant bubble size 
on the acoustic field frequency in a wide range of 
frequencies is a double-valued function. For o = 0, the 
resonant characteristics of vapour bubbles in boiling 
water and a number of cryogenic liquids are calculated 
in [22]. 

05 

ko 

FIG. 6. Dependence of the amplitude of oscillations of a 
vapour-air bubble in water at a frequency off= 18 kHz on 
equilibrium vapour concentration. Curves 1 and 2 cor- 

respond to R. = 1 pm and 3 pm, respectively. 
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FK;. 7. Concentration and temperature distributions during 
oscillations of a vapour-air bubble in water exposed to a 
sound field. R, = 210pm, k = 0.8, pT = 1 bar, f= 20 kHz. 

Curves l-5 correspond to cat = 0, 2~15, 4x15, 6~15, 8~15. 

The existence of two resonances of vapour bubbles is 
due to the dispersion of frequencies since compres- 
sibility of small vapour bubbles, in contrast to the gas 
ones, depends greatly on the frequency of oscillations. 
This also explains the fact that a vapour bubble, unlike 
a gas one, oscillates at low frequencies in phase with 
the liquid pressure far away from the bubble. 

In the case of a vapour-gas bubble its compres- 
sibility depends, among other things, on the vapour 
concentration in the bubble. As is shown in [25], there 
are then the critical values of vapour concentration in 
bubbles at which the response function of a 
vapour-gas bubble can increase markedly. Figure 6 
shows the amplitude of oscillations of vapour-gas 
bubbles in water at atmospheric pressure as a function 
of the equilibrium vapour concentration. Curves 1 and 
2 correspond to R,, = 1 pm and 3 pm. The acoustic 

field frequency is _/‘= 18 kHz. It is seen that the 
response function can be nonmonotonic with respect 
to k,. 

Figure 7 presents temperature and concentration 
distributions in the course of oscillations of a 
vapour-air bubble of radius R,, = 210pm in water at 

atmospheric pressure and frequency of 20 kHz. The 
initial equilibrium vapour concentration was k, = 0.8. 
Curves 1-5 are for WC = 0; 2~15 ; h/5 ; 6n/5 ; 8~15; 

with wt = 0 corresponding to the instant of the 

greatest bubble expansion. The quantities t) and K are 
nondimensional amplitudes of the temperature and 
concentration fluctuations 

T = T,[l + @(r)exp(iwt)]. 

k = k,[l + K(r)exp(ior)]. 

Unlike the temperature, the concentrations of com- 

ponents in the central part of vapour-gas bubbles do 
not fluctuate during oscillations of bubbles. Since for 

an air-water vapour mixture at px - 1 bar the Lewis 

parameter Le = a/D - 1, the thicknesses of the ther- 
mal and diffusional boundary layers are about the 
same. 

In the case of small free oscillations of a vapour 
bubble, its radius can be described by the real part of 

the expression 

R = R,,[l + 6exp(ht)], 16 1 cc 1 

The condition of the existence of a nontrivial 

solution for the system leads in this case to a transcen- 
dental equation in h which, for the quasi-equilibrium 

bubbles in the states far from the critical ones when 
pV << p,, is of the form [7] 

H+ HyT;, + M = 0, 

M = F(l + EH”‘) + G,(H”‘cothH”’ - 1),(33) 

With the use of the argument principle [26] it is 
possible to show that account for the temperature 

nonuniformity in the bubble, even in the absence of 
phase transitions when equation (30) can be simplified 
to 

H + 3yNH/(H2 - NX) 
+ 3(y - 1)(H1’2 coth Hli2 - 1) = 0 (34) 

results in the situation that this equation has an infinite 
number of roots in the left half plane (Re h < 0). This is 
attributable to periodicity of the cotangent function 
which describes temperature distribution in the bubble 
[l, 73 and enters equation (33). It can be shown 
however that all of the roots of equation (33) except for 
the two, complex conjugate, ones are real and exceed 
the real part of the complex roots in absolute magni- 
tude, thereby showing the correctness of results of [l, 
71 where the characteristic equations were solved 
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numerically without analysing the number and struc- 
ture of the roots. 

In the case of a homogeneous vapour bubble, 
equation (33) can be reduced to the polynomial 

x6 + FEx5 + FX4 + (3y - C)Nx2 

- FENCx - FNZ = 0, x = H”‘. (35) 

The analysis shows that equation (35) in the left half 
plane has only a pair of complex conjugate roots, i.e. 
that a homogeneous vapour bubble has only one 
natural frequency. At the same time, in the case of 
forced oscillations within a certain range of bubble 
dimensions the response function of a homogeneous 
vapour bubble has local maxima at two frequencies of 
the acoustic field. It should be noted, however, that the 
Q-factor of the second resonance is much less than the 
Minnaertian one. 

For rather large bubbles, an asymptotic solution to 
equation (33) is obtainable. 

The expressions for the natural frequency of a 
vapour bubble and logarithmic decrement of its 
oscillations induced by heat and mass transfer are 

(36) 

Formulae (36) hold whenever A < 1, 1 E I<< 1 or 

Pe, >> 1, Pet/’ >> FE’. 

In the expression (36) for the damping ratio of 
oscillations of a vapour bubble, the first term is due to 
thermal resistance of vapour in the bubble, while the 
second, to thermal resistance of liquid. In the states far 
from the critical ones, the second term greatly exceeds 
the first one. With no phase changes (I = co), the 
second term is absent and formula (36) yields the 
following expression for the thermal damping ratio of 
oscillations of a gas bubble 

A= 3(7; lb (Pe:‘2 2Ro 00 
- 2), Pe, = ___ >> 1. 

I arr 
(37) 

Here Pei (i = v, g, I) are the Peclet numbers in which 
the velocity is taken to be a characteristic radial 
velocity of small free oscillations of an adiabatic 
bubble, uo. 

In a similar manner, the solution to equation (34) 
can be obtained for the other limiting case of very tiny 
gas bubbles that oscillate in a mode close to the 
isothermal one with the frequency 

w = Jmh z (3po/p,)1’2 R, I, 

In this case the expression for the damping ratio of 
oscillations of a bubble is of the form 

A = (Y - 1)~ Pe 

3oy ’ 

Pe = 2R,(3~,i~,)1’2 
<< 1. (38) 

a9 

EFFECTIVE COEFFICIENTS OF HEAT TRANSFER 
BETWEEN BUBBLES AND LIQUID 

The existing literature on the dynamics and heat and 
mass transfer of vapour-gas bubbles (see, for example, 
survey [4] and an accompanying list of references) 
deals in the main with the effect of heat and mass 
transfer on the dynamics of bubbles. However, interest 
attaches also to the reverse problems, viz. the effect of 
dynamics, and of radial oscillations in particular, on 
the enhancement of heat and mass transfer between the 
bubbles and the liquid. It is shown in [27] that thermal 
effects play a major role in the formation of wave 
structure in a liquid containing gas bubbles. The 
calculation of two-phase flows, transient ones in 
particular, with account for nonuniform temperature 
distribution in the phases is yet a very hard task and 
requires extensive computer time. An example of this 
type of calculation is given elsewhere [28]. Therefore, 
calculation of vapour-liquid mixture flows having 
a bubble structure faces the main problem which 
amounts to assigning the coefficients of the inter- 
phase interaction, thermal one in particular, within 
the framework of the two-temperature model that 
would be valid for a certain class of process. 

A formally determined Nusselt number (11) in- 
dicates that because of the temperature ‘pits’ and 
‘humps’ produced in the gas and liquid by oscillations 
of bubbles the instantaneous values of the Nusselt 
number can be negative over certain time intervals 
with a resulting question as to the means of their 
averaging. It seems natural that the effective heat 
transfer coefficients be selected from the condition that 
these should ensure the same heat dissipation as that of 
the exact solution. 

The expression for the damping ratio of free oscil- 
lations of a vapour bubble derived by solving the 
problem within the framework of the three- 
temperature model (bubble-interface surface-liquid) 
is of the form 

A=n (39) 

By equating the damping ratio components, which 
are due to thermal resistance of the liquid and the 
bubble, with the corresponding components from the 
exact solution (36), we shall obtain the following 
formulae for the effective coefficients of heat transfer 
between a radially oscillating vapour bubble and the 
liquid 

Nu, = Pet” - 2, Pe, >> 1 

@to) 

Nu, = Pef” + 2, Pet” >> FE’. 

Whenever Pe, << 1, the effect of the dynamics of 
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FIG. 8. Dependence of air bubble radii on time. Solid curves, 
exact solution ; dashed curves, solution within the framework 

of a two-temperature model. 

oscillations is small and equation (40) yields Nut = 2, 
which is the well-known steady-state solution for a 
sphere [29]. An expression obtained in a similar way 
for the effective coefficient of heat transfer between an 
oscillating gas bubble and the liquid is of the form 

Nu = Pe:” - 2, Pe, >> 1. (41) 

In the case of rather small gas bubbles oscillating in 
the mode close to the isothermal one the expression for 
the damping ratio of its oscillations obtained within 
the framework of the two-temperature model is 

A = (Y - 1We 
3yNu 

, Pe<<l. (42) 

By equating expressions (38) and (42) we obtain that 
for small gas bubbles 

NM = 10. 

Formula (41) presupposes that a bubble oscillates 
with the frequency close to the natural frequency of an 
adiabatic gas bubble. However, in rather strong shock 
waves the bubbles can oscillate with a frequency 
differing from the Minnaertian one, while in weak 
waves the parameters in the wave can change mono- 
tonically [27]. A change in the bubble radius in the 
front part of a smeared wave is described by the 
formula 

R = R,(l - hexpet), F: > 0. (43) 

The exnression for the Nusselt number in this case is 

c301 - 

Nu = 2R(E/a,)‘,‘, R >> (a,/z)“‘. (44) 

Formula (44) can be restated if it is taken into 
account that 

i: = ~/AR. (45) 

In the case of rather large gas bubbles a change in 
the bubble size, AR, can be approximately related to its 
temperature variation on adiabatic compression 

R AT 
AR= __~ 

T 3(y - 1) 

By substituting (45) and (46) into (44) we shall 
obtain the following expression for the Nusselt 
number 

Nu = 2 RR(3y - l)T 1’2 

a,AT , 
(47) 

Of interest is the fact that by introducing the 
correction factor 

K, = [2R(3yp/p,)1’2/a,]“4/(6y)“2 

into formula (47), obtained for exponential compres- 
sion of gas bubbles, this formula, in the case of small 
oscillations of bubbles, will give the same damping of 
oscillations within the framework of the two- 
temperature model as that given by the exact solution. 
Note that for air bubbles in water within practically 
interesting ranges of pressure and bubble sizes K, _ 1. 

Figure 8 shows the radius-time curves that illustrate 
the behaviour of air bubbles of two dimensions : (a) R, 

= 0.1 mm and (b) R, = 1 mm in water when the 
pressure of liquid far from the bubble was suddenly 
raised from 1 to 2 bar. Solid curves indicate a 
numerical solution of the complete system of equa- 
tions that describe heat transfer and gas bubble 
dynamics in the liquid. Dashed lines represent the 
solution within the framework of the two-temperature 
model with the use of the Nusselt number determined 
by formula (47). 

The numerical calculations have shown that for- 
mula (47) rather adequately describes heat transfer 
between the gas bubbles and the liquid in different 
modes of their radial motion. 
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DYNAMIQUE ET TRANSFERT DE CHALEUR ET DE MASSE 
DE BULLES DE VAPEUR-GAZ DANS UN LIQUIDE 

Rtisumi-Un probleme non lindaire d’interaction dynamique, massique et thermique entre une bulle 
vapeur-gaz et un liquide est consider& en tenant compte de la non-uniformiti de la temperature dans la bulle 
et de l’interdiffusion des composants du melange vapeur-gaz. Une solution numirique est obtenue pour le 
mouvement radial de la bulle induit par un changement brusque de pression dans le hquide, situation qui 
correspond en particulier au comportement des bulles lorsqu’un front d’onde de choc entre dans un rideau de 
bulles. On considtre aussi les bulles de vapeur-gaz qui oscillent dans le liquide sous I’influence dun champ 
sonore. Les effets de capillaritl et les transitions de phase, considlres ensemble, produisent une frequence de 
resonnance pour les petites bulles de vapeur, differemment de ce qui est d&it par Minnaert. On obtient des 
expressions pour la frequence et l’amortissement thermique des oscillations de bulles. On determine les 

coefficients effectifs de transfert thermique entre le liquide et des bulles qui oscillent radialement. 

DYNAMIK, WARME- UND STOFFAUSTAUSCH VON DAMPF-GASBLASEN IN EINER 
FLtiSSIGKEIT 

Zusammenfassung-Es wird ein nichtlineares Problem von thermischer, stotflicher und dynamischer 
Wechselwirkung von Dampf-Gasblasen und einer Fliissigkeit unter Beriicksichtigung der 
Temperaturungleichfiirmigkeit in der Blase und der wechselseitigen Diffusion der Komponenten des Dampf- 
Gasgemisches betrachtet. Fiir das Problem der radialen Blasenbewegung, hervorgerufen durch eine 
plotzliche Drucklnderung in der Fliissigkeit, wird eine numerische Losung erhahen, ein Sachverhalt der 
insbesondere dem Verhalten von Blasen hinter einer StoBwellenfront entspricht, wenn letztere ein 
Blasengebiet durchlluft. Weiterhin werden Dampfblasen betrachtet, die in der Fhissigkeit unter dem EinfluB 
von Schallfeidern schwingen. 

Es wird gezeigt, daD die Oberflacheneffekte und die Phaseniibergange zusammengenommen, eine neue 
Resonanzfrequenz kleiner Dampfblasen zur Folge haben, die sich von der jenigen unterscheidet, die 
Minnaert angibt. Der Ausdruck fur die Frequenz und das thermische Dampfungsmarj der Blasenschwingung 
wurde erhahen. Die zwischen den radial schwingenden Blasen und der Fldssigkeit wirksamen 

WarmeiibergangskoetIizienten wurden bestimmt. 
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,QiHAMMKA M TEWIOMACCOOGMEH nAPOTA30BbIX IlY3bIPbKOB B IKWCMAKOCTM 

AHHOT~LWI - PaCCMOT~Ha HeflHHefiHaSl 3ailaVa 0 TenJIOBOM, MaCCOBOM H LIHHaMHSeCKOM B3akiMO- 

&iCTBHH napOra3OBOrOIly3bIpbKaCwtFiAKOCTbloCy'ieTOM HeOnHOpOLlHOCTH TeMnepaTypbI B ny3bIpbKe 

H B3aHMHOi%IIH+$y3HHKOMnOHeHT napOra3OBOiiCMeCH. npHBeJIeHbl~3yJIbTaTbIWCJleHHOrO pelUeHH$l 

3aiIa'IH 0 panHa,IbHOM nB%KeHWI ny3bIpbKa. BbI3BaHHOM BHe3anHbIM H3MeHeHHeM RaB,IeHHIl B XHD- 

KOCTH,qTO, B qaCTHOCTH, COOTBeTCTByeT nOBeL,eHHfO ny3bIpbKOB 38 $pOHTOM yLIapHOi? BOJIHbI. KOrna 

nocnenHK* BXO~HT B ny3bIpbKoByw saaecy. PaccMoTpeHbI TaKxe naporasoeble ny3bIpbKH. coeepma- 

muwe ManbIe paneanbHbre KOJIe6aHHs B xuinKocTH non nei%cTBHeM aKycTHrecKor0 nonfl. nOKa3aH0, 

'iTo KanHnnRpHbIe 3@+eKTbI A f$a3oBbIe nepexonbr B c0~0Kyn~oCTH H~HBOLVIT K HOBOA pe30HaHcHoii 

qaCTOTe MenKUX napOBbIX ny3blpbKOB. OTJIW%HOfi OT MAHHaZipTOBCKOk. nOJIyqeHb1 BbIpaEeHHfl nflll 

VaCTOTbI H neKpt?MeHTa TUlJIOBOrO 3aTyXaHiiS Kone6aHwfi ny3bIpbKOB. OnpeneJleHbI Y$~KTHBHbIe 

K03~I#HIIHeHTbI TeIInOO6MeHa panHaJIbH0 HyJIbCHpyIOLUHX ny3blpbKOB C ESiLIKOCTbIO. 


